Table 1. Atomic position parameters, with standard deviations

Values are given as fractions, $\times 10^4$, of the unit cell edge. The last two columns give the parameter B (together with its standard deviation) of the temperature factor exp $\{-B(\sin \theta/\lambda)^2\}$.

	x/a	$\sigma_{x/a}$	y/b	$\sigma_{y/b}$	z/c	$\sigma_{z/c}$	В	σ_B
Mg	2487	7	2487	7	2290	24	0.64	0.10
B(1)	3883	18	3761	18	8738	34	0.21	0.24
B(2)	1119	22	1091	21	5830	40	0.95	0.31
O(1)	0000		0000		9841	36	0.85	0.22
O(2)	5000	_	5000	_	4512	31	0.65	0.23
O(3)	3352	14	2388	13	9916	27	0.84	0.22
O(4)	1598	15	2638	14	4709	28	0.95	0.21
O(5)	4795	11	2913	12	7300	30	0.32	0.17
O(6)	0176	13	1979	13	7183	29	0.88	0.20
O(7)	2450	12	4823	13	8028	24	0.54	0.19
O(8)	2704	13	0176	12	6387	23	0.43	0.18

factor as a consequence remained high. The final value of 22% left room for doubts about the essential correctness of the proposed structure. Moreover, no assessment of the accuracy of the atomic coordinates was possible under the circumstances. It was therefore considered worth while to attempt a least-squares refinement based on space group $P4_2$, utilizing the experimental data of Paton & MacDonald.

A modified version of the Busing, Martin & Levy (1962) least-squares refinement program was used. (The observed structure factors were weighted according to the scheme of Hughes, setting $2F_{\min}=15$.) The atomic coordinates given by Paton & MacDonald served as a starting point (with the exception of the z parameter of Mg, which was eventually found to have an incorrect sign).

By initially refining a fraction of the atoms at a time, the parameters were found to converge, and the reliability factor came down from 22% to 15.7%. The parameters obtained in this way were not entirely satisfactory as far as the atoms O(1) and O(2) (in special positions) were concerned. The resulting z parameter of these two atoms led to differing boron-oxygen bond lengths (1.32 and 1.54 Å) for chemically equivalent bonds. By adjustment of these z parameters to give boron-oxygen bond distances of 1.47 Å and continuing the refinement process, the parameters converged to new values. The reliability factor remained at 15.7%, but less disparate values for the boron-oxygen bond lengths ensued.

Parameters, with their standard deviations, from the last refinement cycle are given in Table 1. The boron-oxygen bond lengths calculated from these parameters average 1.47 Å. This agrees with the accepted value for the boron-oxygen bond, when the boron atom is in four-

fold coordination. The individual bond lengths fall within a range around the average value, corresponding to about ± 3 times the standard deviation (3×0.03 Å).

The structure contains an isolated borate polyanion, $(OH)_3B-O-B(OH)_3^{2-}$, roughly described as two BO₄ tetrahedra sharing a corner. The B-O-B bond angle, calculated from the original parameter values of Paton & MacDonald, was found to be 111.6°. As observed by Takeuchi (1958) and Krogh-Moe (1962), this value for the B–O–B angle is considerably smaller than the values usually reported for the B-O-B angle between planar BO3 triangles sharing a corner. Thus the B-O-B angle of the $O_2B-O-BO_2^{4-}$ polyanion in magnesium pyroborate is 134.5° , with estimated standard deviation 1.3° (Block, Burley, Perloff & Mason, 1959). However, from the present refinement the values 120.5 and 127.0°, with estimated standard deviations 3.5°, are obtained for the two different B-O-B angles in pinnoite. Hence the experimental evidence for a more acute B-O-B tond angle in pinnoite than in magnesium pyroborate is not entirely conclusive.

References

- BLOCK, S., BURLEY, G., PERLOFF, A. & MASON, R. D. 1959). J. Res. Nat. Bur. Stands. 62, 95.
- BUSING, W. R., MARTIN, K. D. & LEVY, H. A. (1962). ORNL Report T.M.-305. Oak Ridge National Laboratory, Tennessee.
- KROGH-MOE, J. (1962). Z. Kristallogr. 117, 166.
- PATON, F. & MACDONALD, S. G. G. (1957). Acta Cryst. 10, 653.
- Такеисні, Ү. (1958). Miner. J. (Japan), 2, 245.

Acta Cryst. (1967). 23, 501

Six new zinc sulphide polytypes of the family 16L-48R. By S. MARDIX and O. BRAFMAN, Department of Physics, The Hebrew University, Jerusalem, Israel.

(Received 23 February 1967)

Six hitherto unknown ZnS polytypes were found. Their unit cell and Zhdanov symbols are: 16L (14 2); 16L (5 3 3 5); 16L (3 3 2 2 3 3); 48R (13 3)₃; 48R (8 4 2 2)₃; and 48R (10 6)₃. X-ray oscillation photographs of their (10.1) column are shown; the calculated and observed intensities are compared.

The concept of polytype families has already been introduced in a previous publication (Mardix, Alexander, Brafman & Steinberger, 1967); five polytypes of the family 16L- 48R were reported there. Six other polytypes of the same family were found in two vapour-phase-grown zinc sulphide crystals. The crystal 175 S23 contained polytype regions

SHORT COMMUNICATIONS

Table 1. Comparison of	calculated and observed	intensities for the six polytypes
------------------------	-------------------------	-----------------------------------

I	calc.	obs.	I	calc.	obs.	Further observed relations between intensities
16L ()	(42)					
0	406	vw	Ŧ	•••		5 • • • • • • • •
1	591	W	1	220	vw	$5 \approx 4 > 3 > 2 > 1$
2	731	W	2	5Z 23	vvw	0>1
3	047 028	W	3 Z	928	w	
5	976	w	3	36085	vvs	
6	1001	w	5	13950	vs	
7	1026	w	7	2722	S	
8	1114	w	8	1114	W	
48 <i>R</i> (10 6)3					
2	239	vw	1	68	vvw	<u>16</u> >17>14
5	505	vw	4	539	w	$19 \simeq 13 > 20$
8	0	а	7	112	vvw	22>4
11	1774	S	10	/4/	w	う > 2 ラ < ゴ
14	6130 7207	UUS UUS	13 17	21043	US	/>1
20	3474	115	10 19	5020	115	
23	213	vw	22	894	w	
2	70	vvw	T	18	vvw	ī0>7
5	410	w	4	270	vw	$11 > 8 \simeq 23$
8	922	S	7	741	S	$14 \simeq 17 > 20$
11	1437	S	10	1275	S	2>1
14	1/95	VS VS	13 16	35564	US DDS	
20	1733	<i>US</i>	10 10	1815	115	
23	1403	<i>s</i>	22	1526	S	
48 <i>R</i> ((8 4 2 2)3					
2	239	nw	Ĩ	1385	S	ī6>ī3>ī9
5	738	w	4	539	w	$14 > 11 \simeq 23 > 20$
8	0	а	7	16	vvw	$\overline{1} > 17$
11	3646	vs	10	747	w	22 > 5
14	6130	vs	$\frac{13}{13}$	9668	vvs	
17	10/5	S	10	10942	vvs	
20	4346	US US	22	894	w	
16L ((5 3 3 5)*	•••				
0	406	w				6>3>7
ĩ	190	vvw				$8>4\simeq 2$
2	864	S				
3	4023	vs				
4	928	S				
5	12483	vvs				
6	5927	vs				
8	2600	US S				
16L.	(3 3 2 2 3 3)*					
0	406	17147				
1	528	UW UW				6 > 2
2	1809	S				1 > 7 > 0
3	5014	vs				
4	928	W				
5	10813	vvs				
6	2830	<i>s</i>				
8	11515	UW				
0	11010	000				

* The observed intensities are symmetrical with respect to the zero line.

.

.

Fig.1. (10.1) column of an oscillation photograph about the c axis of the six polytypes (\times 3). Cu K radiation, 60 mm diameter camera. The position of the zero line is indicated by an arrow.

of the structures: 16L (14 2); 48R (10 6)₃; 48R (13 3)₃; 48R (8 4 2 2)₃. The crystal 193 S61 contained the polytypes: 16L (5 3 3 5) and 16L (3 3 2 2 3 3).

X-ray oscillation photographs about the c axis of the crystals were taken; Cu K radiation was used with a collimator diameter of 0.1 mm. The (10.1) columns of these photographs are shown in Fig. 1. The photographs labelled 16L (14 2) and 48R (10 6)₃ are of two nearby regions with a cubic region in between. This cubic region was also included in the two photographs and its characteristic spots are easily seen between those of the polytypes.

The identification of the polytypes was carried out by comparing the observed intensity order of the (10.1) spots with those calculated for all possible Zhdanov sequences of the family 16L-48R. A description of the procedure of identification is given in detail by Mardix *et al.* (1967). The observed and calculated spot intensities of the (10.1) column of the polytypes are given in Table 1.

References

MARDIX, S., ALEXANDER, E., BRAFMAN, O. & STEINBERGER, I. T. (1967). Acta Cryst. 22, 808.

Acta Cryst. (1967). 23, 503

Unit-cell dimensions of ammonium cadmium chloride and potassium cadmium chloride. By K.S. CHANDRASEKARAN

and S.K. MOHANLAL, Physics Department, Madurai University, Madurai-2, India

(Received 31 January 1967)

More accurate determinations of unit-cell dimensions of isomorphous $4NH_4Cl.CdCl_2$ and $4KCl.CdCl_2$, space group $R\overline{3}m$, gave $a=8.842\pm0.005$ Å, $\alpha=88^{\circ}48'\pm10'$ and $a=8.601\pm0.001$ Å, $\alpha=89^{\circ}57\pm5'$ respectively.

Ammonium cadmium chloride, $4NH_4Cl.CdCl_2$, and potassium cadmium chloride, $4KCl.CdCl_2$, are isomorphous and the unit-cell data for these rhombohedral crystals, space group R3m, are given as in Table 1.

Table 1. Unit-cell data

	4NH4Cl.CdCl2*	4KCl.CdCl ₂ †
а	8·91 Å	8·57 Å
α	88° 54′	∼90°
Density (calculated)	1⋅878 g.cm ⁻³	2·59 g.cm ⁻³
Density (measured)	1.930 ± 0.001 g.cm ⁻³	not stated

*	Structure	Reports	(1947–1948).
t	Structure	Reports	(1945–1946).

In these data, the *a* and α values had large and unstated margins of error. For the ammonium compound, it was mentioned that the value a=8.91 Å was uncertain and that with the measured density the value of a=8.79 Å was calculated.

As a consequence of our interest in the structure of such compounds, the unit-cell measurements were carried out by employing normal-beam, zero-layer, Weissenberg photographs about the *a* axis, using Cu $K\alpha$ radiation. The camera had been calibrated by a sodium chloride powder pattern as a check of systematic errors. Utilizing about 15 high-angle reflexions, $\theta > 63^\circ$, which were all α doublets, starting values were obtained for the reciprocal quantities, a^* and α^* , by considering the relationships $(\sin^2 \theta \pm \sin^2 \overline{\theta})$, where θ and $\overline{\theta}$ refer to the reflexions 0kI and 0kI respectively. With these starting values the corrections for random errors of measurements were obtained by a least-squares calculation (Whittaker & Robinson, 1929). The final lattice parameters together with their probable errors are given in Table 2.

Table 2. Unit-cell data (present work)

	4NH4Cl.CdCl2	4KCl.CdCl ₂
а	8·842 ± 0·005 Å	8·601 ± 0·001 Å
α	88°48′±10′	89° 57′ ± 5′
Density (calculated)	1·923 g.cm ⁻³	2·581 g.cm ⁻³

The present values account for some of the high-angle reflexions which would not occur for the earlier unit-cell parameters and the density agreement is also improved.

Detailed structure investigations are likely to be very delayed. One of us (SKM) would like to acknowledge gratefully the award of a scholarship by the Government of India.

References

Structure Reports (1945-1946), 10, 130.

Structure Reports (1947-1948), 11, 416.

WHITTAKER, E. & ROBINSON, G. (1929). The Calculus of Observations. London: Blackie.